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Nonlinear theory of pattern formation in ferrofluid films at high field strengths
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When a magnetic field is applied to a thin layer of a suspension of magnetic nanopdféoiefuid), the
formation of labyrinthine and hexagonal patterns is observed. We introduce a theory to describe ferrofluid
patterns at high field, where a nonlinear relationship between field and magnetization is expected. The com-
putational difficulties due to the use of a nonlinear magnetization curve are solved by a reformulation of the
magnetic energy equation. The evolution of the pattern size at intermediate and very high fields can be
understood by an analysis of limiting cases of the magnetization curve. In particular, at a very high field the
pattern size reaches a constant saturation value which has been recently confirmed by experiments. The field
for the onset of a nonlinear behavior is shifted to higher field strength due to a demagnetization effect. This can
partially explain the ability of linear approaches to reproduce experimental data even at a high field. Finally, the
impact of the nonlinearity of the magnetization curve on the transition between hexagonal and labyrinthine
patterns is discussed.
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[. INTRODUCTION ors, has been the subject of several theoretical investigations
[17].

Ferrofluids are colloidal suspensions of magnetic nano- The theoretical approaches are usually based upon the for-
particles in a liquid solvenfl]. These magnetic liquids ex- mulation of the free energy as a sum of magnetostatic and
hibit a large number of extraordinary properties. A phenom-nterfacial parts|1-3]. Recent theoretical studies also in-
enon which has received considerable attention, botlelude an entropy term, which might prove important in de-
experimentally and theoretically, is the so-called labyrinthinetermining the size of patterns for micron-sized cell heights
instability [2,3]. A ferrofluid is confined with an immiscible [10,11. Approximationg2,3] were proposed to simplify the
nonmagnetic liquid between two closely spaced glass plate&mputation of the magnetic energy. Although these methods
(Hele-Shaw cejl The application of a uniform magnetic are widely used nowaday$,10,12-16 the effects of the
field at right angles to the glass plates induces a labyrinthin@PProximations upon the calculated results were only re-
pattern of several millimeters: the convoluted black wallscently studied18,19. We have shown that, in particular, the
made of the ferrofluid are separated by paths of the transpa@PProximation introduced by Rosensweigal. [3] leads to
ent nonmagnetic liquid. This magnificent instability was ob-Markedly overestimated stripe widths at high field strengths
served for the first time in the late 19708]. The initial [4]. The good agreement with experimental data observed

theoretical studies focused on the conditions necessary %efore was due only to errors in the computation of the the-

. L .7 Oretical values which were corrected in Rpf]. Moreover
establish the labyrinthine patterf@]. In 1983, Rosensweig . "
et al. [3] proposed a theory to calculate the Iabyrinthinethe method proposed by Rosensweigal. [3] predicts field

: idth ¢ . f th I heiah d the fi Idinduced transitions between hexagonal and labyrinthine pat-
stripe width as a function of the cell height and the field o s \yhich are not confirmed using more accurate theories

strength. Their theoretical results were apparently in googl1g] Therefore, we have recently developed an alternative
agreement with the experimental d@8d4]. In the following  5ppr0ximate scheme that is very efficient and gives values in
years, experimental studies showed that, under certain cognod agreement with the accurate resfs.
ditions, hexagonal arrays of ferrofluid columns appear in-- Qur interest in these kinds of theories was motivated by
stead of labyrinthine patterr{$,6]. Due to the use of de- the discovery of labyrinthine and hexagonal mesostructures
mixed ferrofluids, the size of the patterns were markedlyof magnetic cobalt nanocrystals in our laborat¢gp,21].
reduced to several micromet€ls,7]. Structures similar to  They have been obtained by the evaporation of solutions of
those in ferrofluids were also observed in magnetorheologieobalt nanocrystals while applying a magnetic field perpen-
cal suspension8,9]. The dynamics of the pattern formation dicular to the substrate. These artificial structures of several
and the transition between hexagonal and labyrinthine strudaundreds of nanometers can be manipulated to achieve tai-
tures were studied, both theoretically and experimentallyored materials for applications and for exploration of physi-
[6,7,10—16. The occurrence of similar patterns in other sys-cal phenomena. Our aim is to develop a theory, which ex-
tems, such as Langmuir monolayers and type | supercondugblains the formation of these mesostructures. Moreover, we
want to find the parameters which control their size and their
morphology. One major obstacle to this theory is the linear
*Electronic address: richardi@sri.jussieu.fr relationship between the magnetization and the magnetic
"Electronic  address:  pileni@sri.jussieu.fr; URL: http:/ field usually assumed in published approaches. Figure 1
www.sri.jussieu.fr; to whom all correspondence should be sent. shows the magnetization curiké(H) of a deposition of co-
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Hele—Shaw cell deposition of Co nanocrystals field strengths. The nonlinear results are compared with the
linear values and experimental data. Then, the theoretical

1. T T T T 1 I I I Jd-—H-——-F-Ct-
L AT : results obtained by the nonlinear approach are discussed with
osli / / 4 respect to two limits. First, at low field strengths, the differ-
L/ = ] ences between the linear and nonlinear curves can be de-
0.6l 4 scribed by truncated expansions. Second, we can derive sim-
§ i - | plifying relationships at high field strengths, where the
S g4l = ;‘eposm."“ b Comingen | magnetization reaches a constant value. Finally, the transi-
: -- ferrofluid (}=1.6, d=10 nm) . . S .
B tion between hexagonal and striped patterns is investigated.
021t i In particular, we are interested in the question, whether the
f nonlinear theory leads to new transitions with respect to the
0Dl linear theory. All calculations were carried out using the
COUT T U sl homemade FORTRAN packagesXALAB [22].
FIG. 1. Magnetization curves. Solid line: experimental curve of Il. THEORY
a deposition of cobalt nanoparticl¢®l]; dashed line: Langevin
function of a ferrofluid(magnetite particles with a diameter of 10 A. Description of the magnetic patterns
nm, initial magnetic susceptibility of 1)6dotted line: linear ap- Following previous studief3,10,18,19, the labyrinth is

proximation of this Langevin function. The arrows indicate the yoo oy a5 a repeating pattern of infinitely long parallel

Eﬁg?:_g;;ﬁldcse}ﬁi% fg; tngggﬁz?’n;?té%y (Sgsggi?i\gﬁ%f[i]o stripes, while the hexagonal structure is idealized as a hex-

nanocrystals agonal array of cylmde_rs. The symmetries of_these structures
allow a marked reduction of the computing time. Therefore,

) very accurate estimates of the free energy can be calculated.
balt nanocrystals. The field strengths used to produce th? goretical studies of realistic Iabyrintgime patterns have
mesostructures of these nanocrystals range between 0.3 4 own that the idealized description of the structures used
08 T (mqued by an arrow At these field stre'ngths, the here can give reasonable estimates of the pattern $6je
re_:laﬂonshlp betwe_en/l andH is completely nonlinear. The The ratio of the ferrofluid to the total volume is denoted
aim of this paper is to develop a theory that takes the nonby . For a givend, the geometry of the striped patterns is
linear behavior oM (H) into account. Such a theory is of defin'ed by the cell ’heigHI and by the stripe widthv, . The
tmhg:)er g:rqgraelxmetﬁ:rel;t -[)Tauss;r\}gg ?nO%%ra?ergsmenémtg‘twe%xagonal structure is described dyL andr,, which is the

y P P radius of the cylinders. The global frame is chosen in such a

leads to the question: Why doediaear approach give reli- ; o L S
able predictions, even at a high field, for the experimentsway that itsx axis is along the direction of the applied field.

carried out by Rosensweigt al.? Indeed, the magnetization
curve of a typical ferrofluid shown in Fig. 1 indicates that
some of those experiments in Hele-Shaw cells are carried out In accordance with Ref$3,10,18,19, values ofr or w;
under nonlinear conditions. are obtained by a minimization of the free energy per surface
How must the linear approach described in Ré&B] be  areaf=F/s. The free energy consists of a surface and a
modified to take the nonlinear behavior df(H) into ac- magnetic term:
count? The morphology and size of the patterns are usually
calculated by a minimization of the free energy. For a given
structure(described in Sec. Il Athe total energy is obtained
by the following procedure in the linear case. Since we limit our study to pattern heights greater than 2
(1) From a given magnetization, the demagnetization fieldum, the entropy is neglectefl8]. The surface energy is
in the pattern is compute@ee Sec. I ¢ characterized by the interfacial tensienbetween the two
(2) The magnetization is calculated self-consistently fromimmiscible liquids. In agreement with experimental studies
the demagnetization field using a linear relationship. [23], we assume that does not depend on the field strength.
(3) The magnetization is used to evaluate the magnetid@he surface energies per surface area for the hexagonal and
energy. Here, an equation is used, which is only valid in thestriped patterns were derived elsewhgsee Eqs(15) and
linear case. (16) in Ref. [18]].
(4) The total free energy is calculated from the magnetic, The general equation for the magnetic energy is given by
surface and entropic terms.

B. Free energy of ferrofluid patterns

F=F¢+Fp. (1)

B ! ! MO
In the nonlinear case, the nonlinear relationships have to be Fm= fvfo H'(r)-dB'(r)dr— = VHgdr. @
used in step$2) and (3) as explained in Secs. 11D and Il E,
respectively. This leads to some difficulties in st8p(com-
putation of the magnetic energyn Sec. Il E, we show how
these problems can be solved. In Sec. lll, the nonlinear
theory is applied to calculate pattern size as a function of the B(r)=uo(H(r)+M(r)), 3)

The magnetic induction is calculated from
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whereM (r) is the magnetization in the cylinders or stripes. 1.0
The magnetization in the pattern is a function of the mag- -
netic field 0.8 {.,'4:,» T
0 v -- mean-field model (6 %) 1
M(r)=f(H(r)). (4) » 0.6 & -— Langevin theory (21 %) e
= | [' - mean-field model (21 %)
H(r) is the total field which is the sum of the strength of = 04l s i
the applied fieldH, and of the negative demagnetization i
field Hy(r): 02l |
I
H(r)=Hg+Hgy(r). ) 0.0 i I i I ; | : | ;
0 0.1 0.2 0.3 0.4 0.5

B, [tesla]
C. Calculation of the demagnetization field
FIG. 2. Magnetization curves of a ferrofluichagnetite particles

The demagnetization field is caused by the magnetizatiop, oyme fractions of 6% and 21%, initial magnetic susceptibil-

within the ferrofluid, which is calculated here from a nonlin- ity of 1.6). Solid and dashed-dotted lines: Langevin function;
ear relation. The calculation ¢4 from a given magnetiza- yashed and dotted lines: modified mean-field model.

tion does not change in comparison with the linear case. It is

explained elsewhergl8,19. In particular, the correct treat-
ment of the long-range dipolar interaction is derived in Ref.
[18]. The volume-averaged magnetization is used during th
evaluation ofHy. This allows us to simplify the numerical

fore, we are now demonstrating that the use of a Langevin
function is justified for the systems studied in the paper. To
Bvaluate the effect of the approximations made in this model,
. -9 we compare the magnetization curves of the Langevin and
calculations and, thus, to largely reduce the computing time, .6 accurate approaches. Several models have been derived

[19]. We have recently shown that in the linear case thig, take the magnetic interparticular interactions into account
approximation does not significantly change the calculate 24-26. For example, in the higher-order, modified, mean-
pattern sizes and energigk9]. We also verified that in the {014 model [26], the field H in Eq. (7) is replaced by an
nonlinear case the use of an averaged magnetization does Ngt.tive field given by

affect the theoretical results.

M/ (H) 1 dM_(H)

D. Nonlinear magnetization curves = _
g He=H+ 3 +144M,_(H) aH

()
In contrast to previous approaches, we do not restrict our-

selves to a linear relationship betwekhandH. The range of validity of this theory is determined by the
The magnetization curvé(H) can be measured by ex- yinglar coupling parameter:

periments, such as those using the superconducting quanturnp

interference devicdSQUID). In this paper, it is approxi-

mated by a Langevin function, which is introduced in the A= m

following. ApokgTd®
For ferrofluids with weak dipolar coupling, the magnetic

interactions between the nanoparticles can be neglected. {phere the dipole moment of the magnetic particles is calcu-
this case, the Langevin theory gives reasonable estimates Rfiaq fromm= woM4d37/6. A very recent simulation study

the magnetization as a nonlinear function of the total magnag shown that the modified mean-field model gives reliable

2

(©)

netic field: predictions for the dipolar coupling parametex3 [27].
M, (H) 1 Here, we restrict our study to values pfsmaller than 2.5
LM =L(a)=cotha——, (6) which corresponds to a particle size of about 12 nm. Figure 2
¢WVlg4 a

compares the magnetization curves obtained by the Langevin
3 theory and the more accurate mean-field model. The initial
_r moMgd H 7) susceptibility y defined by the relationshipl = yH is fixed
6 kgT ' at 1.6. Two values of the volume fractignare used6% and
21%) [27]. This covers the typical concentration range which
We assume a monodisperse suspension of nanoparticlgsobtainable in real ferrofluids. The deviations between the
with a magnetic diametet. M is the saturation moment of two theories are less than 3%. This precision is sufficient
the bulk. ¢ is the volume fraction of the magnetic particles. for this study. Moreover, the Langevin function allows the
Note the difference betweepand the ratio of the ferrofluid use of analytical expressions to describe the evolution of the
to the total volume in the pattern denoted By ¢ can be  magnetization at intermediate field strength. This is used in
calculated from the saturation moment of the ferrofldd  Sec. IlIC.
using ¢=M¢/My. The temperaturd is fixed at 300 K in For small field strength$a<<1), we reach a linear rela-
the following. tionship betweerM and H characterized by the magnetic
We will use the Langevin model to study the influence of susceptibility. In the case of the Langevin theory the suscep-
a nonlinear magnetization on the ferrofluid patterns. Theretibility is given by

a
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243 B
_m moMyd F =j f H'-dB'dr
XL_1_8(P kBT ' (10) " Vl)l 0
—_
More accurate expressions were derived using the mean- £
spherical approximatiofMSA) [28], the Born-Mayer expan- _ H o , o R
sion method29], and the statistical model based on the pair + 1o y H'-dH'dr——= VHodl‘,
correlation function30]. Taking x, as a parameter, all the
above approaches lead to the same higher-order expression By
for the initial susceptibility 30]: (13
x=xL(1+ x I3+ XE/144)- (11)  Where we use thaB=puoH in V. After carrying through

the integration oveH, we can rewriteE, as
This equation corresponds to the weak field limit of the
mean-field mod€glEqg. (8)]. Experimental measuremenf0] E _Ho H2dr — @j H2dr (14)
and simulation studief27] have shown that this equation 272 )y 2 Jv, '
gives reliable results fok<3. In Sec. Il A, Egs.(10) and
(11) will be employed to calculate the variation of the vol- ~ The integral oveV,y, in Eq. (13) is replaced by the dif-
ume fractione of the magnetic fluid as a function of the ference of those over the total volurkeandVy,. In order to
particle size for giverny andMg. further simplify E,, we use a relationship derived in Rosens-
weig's textbook([1], pp. 96—98:
E. Calculation of the magnetic energy in the nonlinear case

1 Mo
In the case of a linear relationship betwednandH Eq. LE(B' H—uoHg)dr=—"=- M-Hodr. (15

2
(2) simplifies to give Vi

This relationship also holds in the nonlinear case, because
_Ho M(r)-Hodr, (12) for its derivation the assumption of a linear relationship be-
2 vy, tweenM andH is not used. Employin®= uo(H+ M), Eqg.

_ ) (15 can be rearranged to give
whereV,, is the volume occupied by the magnetic liquid.

Frn=

There are two major differences between the general&q. o o
its i — | H%dr=—=-| M-Hdr
for F,, and its linear counterpart. 2 )y 2 )y
(i) Equation(2) implies an additional integration ové.
(i) The integrals of the general expression are over the + @f Hgdr— @f M-Hqdr. (16)
total volumeV, while in the linear equation they are only 2 2 Jv,

over the volumeV, of the magnetic matter. o . . )
The first integral on the right side can be restricte/tp

These two differences markedly complicate the calculasince M=0 outside the magnetic liquid. Combining Egs.
tion in the nonlinear case. In the following section, we will (13), (14) and(16), we finally arrive at
show how they can be overcome.

. . o B
_ For a nonlinear relationshipt = f(H), Eq.(2) cannot be Fm:J f aroagdr—"°[ ™. uar

simplified as in the linear case. In particular, the integration Vi Jo 2 Jv,

over B cannot be avoided. Thus, to obtain the magnetic en-

ergy for a given applied fielt,, the magnetization and the Mo M. H dr—&J H2dr 17

demagnetization field at all intermediate field strengths be- 2 v, 0 2 v, :

tween O T andH, must be computed. In contrast in the linear
case, the magnetization needs only to be evaluated at the The new form ofF,, is very useful in computation since it
field Hy. Tests have shown that we can use quite a largeontains only integrals ove¥,,. This largely reduces the
integration steAB<<0.005 T, without affecting the numeri- size of the spatial grid used for the numerical integration. In
cal precision of the results. In addition, the evolution of pat-the case of the hexagonal pattern, another fact makes Eq.
terns is usually studied over a complete range of field17) very useful for the numerical calculations which is ex-
strengths starting from O T. Therefore, the integration @&er plained as follows. Let us study the evolution of the demag-
does not markedly reduce the efficiency of our approach. netization field in the hexagonal pattern. The demagnetiza-
The second difficulty arising from the use of EQ) is  tion field is used to calculate the total field, which appears in
due to the integration over the total volume. In the following, the equation of the magnetic energy. The demagnetization
we will show that Eq.(2) can be rewritten in a form that field is self-consistently computed by an integration over the
contains only integrals over the magnetic volume as in thenagnetization as discussed in Sec. Il C. The magnetization is
linear case. The first integral in E€R) can be divided into calculated from a Langevin function introduced in Sec. 11 D.
two integrals, that over the volume of the magnetic fluig ~ We use the same parameters for the Langevin function as in
and that of the nonmagnetic liquM,,: the whole paper. The demagnetization field is plotted as a
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daak ' ' ' ' i ' TABLE I. Values of the volume fraction of magnetic particles
haal : in the ferrofluid calculated from Eqg10) and (11) for different
o6l particle sizesy=1.6; My=4.46x10° Am™1.
'E 0.661 d (nm) ¢, Langevin ¢, mean-field
= -0.68F 6 69.0% 50.5%
= r 8 29.5% 21.2%
&0 10 15.1% 10.8%
onk 12 8.7% 6.2%
074+
L | L | L I L . . . .
0 0.2 0.4 0.6 0.8 mation. It is nevertheless interesting to note that an alterna-
riL tive approach introduced by Cebers and recently used in Ref.

FIG. 3. Demagnetization field as a function of the distance from[31] can be easily extended to the nonl,inear C,ase' This ap-
the cylinder center for three values of. Parameters:B, proach assumes a constant magnetization during the pattern

=0.002 T, y=1.6, $=0.5,r,=0.5 mm,L=1 mm, andx=0. The formation. It has been demonstrated that this approach can

sketch presents a cylinder and two of its neighbors. The hexagoR€ derived as an approximation of the method using an av-

indicates the average space around the central cylinder used to ca@jage magnetization. Nevertheless, the pattern size obtained
out the integration. by the constant approach is in good agreement with accurate

. ) . results in the linear case. The constant magnetization could
function of the distance from the center of a cylinder in Fig.pe calculated from a nonlinear magnetization curve, such as
3. The sketch in the same figure shows the tops of thregy gq. (6), and, thus, this approach could be also applied in
cylinders of the hexagonal pattern. Due to the translationahe nonlinear case. We expect that this method gives pattern
symmetry of the idealized structure, the integrals over th&jze in good agreement with the approach used here, since it
total volume in Eq.(2) can be restricted to the hexagon can be shown that the results are close at low and high field.
around one cylinder. In Fig. 3, we plot only the evolution of actually, at low field, we will find the good agreement for
the demagnetization field within the hexagghdenotes the  the Jinear case discussed above. At high field saturation, we

radial angle of the cylindrical frame with its origin at the j|| show in Sec. Il C that the equations of magnetic energy
center of a cylinder. Due to the rotational symmetry of thefor hoth approaches become the same.

hexagonal pattern, the calculations can be restricted to the
interval of 30° presented by the two lines within the hexagon
of Fig. 3. 8=0° denotes the direction of the smallest separa- . RESULTS
tion from the next cylinder, whilgg=30° corresponds to the
midway between two neighboring dots. The number of
anglesp necessary for an accurate computation of the inte-
grals in Eqs(2) and(17) depends on the variation bfy with To compare the pattern sizes predicted by a linear and a
B. Figure 3 shows that outside the cylinder the demagnetizaaonlinear approach, the magnetization curve is represented
tion fields for the different values ¢8 deviate. Therefore, in by the Langevin function in Eq6). The comparison in Fig.
the case of Eq(2) where we integrate over the total volume 2 has shown that the Langevin theory gives reliable predic-
many angles3 have to be used. In contrast, the variation oftions under the conditions studied here. Since the magnetic
H4 with 8 is small within the limits of the cylinder. For Eq. particles in many ferrofluids consist of magnetite, the domain
(17), where the integration is restricted to the inside of themagnetization of this material is used in the following {
cylinder, we can therefore reduce the number of angles =4.46X 10° Am~1). The initial magnetic susceptibility,
We want to emphasize that the use of ELj) instead of the measured by Rosenswegf al. [3] for the ferrofluid em-
general expression does not only lead to an enormous gain ployed in their experiment, is 1.6. The interfacial tension, the
computing time. In addition, only the reformulated equationvolume fraction, and the cell height correspond to the experi-
allowed an accurate computation of the magnetic energiesnental conditions published in the same R¢8] (o
Indeed, we never did succeed in the calculation of numeri=0.0043N m!, ¢=0.5,L=0.9 mm). The particle diam-
cally stable values of,, from Eq.(2) for hexagonal patterns eter d in normal ferrofluids is about 10 nni32]. The
even when very large numbers gfalues were used. Hence, magnetization curve calculated from the Langevin function
the use of Eq(17) instead of the original expression makes for this particle diameter is shown in Fig. 1. To study the
possible an accurate and efficient calculation of the magnetimfluence of the particle size, four different diametdnsing-
term. ing from 6 nm to 12 nm are used. Frokhy, x andd, the
There are several other approximation schemes proposedagnetic volume fractio within the ferrofluid can be cal-
in the literature to calculate the magnetic energy in the lineaculated either by Eq10) or by the more accurate mean-field
case. We have recently shown that the approximation of arquation(11). The results ofe for the four particle sizes
average magnetization for the demagnetization field usedtudied here are shown in Table I. While particle sizes
here gives the best results in comparison with accurate vakround 10 nm yield reasonable valuesgothe volume frac-
ues[18]. Therefore, we will restrict our study to this approxi- tion of 50.5% obtained fod=6 nm is unrealistically large.

A. The influence of the nonlinear magnetization curve
on the pattern size
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T " T " iimear about 0.015 T. This can be explained as follows. The ferro-

ol + + non linear (6 nm) fluid forming the pattern is subjected to a field which is
| =- non linear (8 nm) reduced from the applied field strength due to the demagne-

--- non linear (10 nm) . . . T

1k - non linear (12 nm) tization field. Since the magnetization in the pattern depends

- o experiments on the total field, the applied field in Fig. 4 must be higher
S than that in Fig. 1 to compensate the demagnetization field
. and to induce a nonlinear behavior. Due to this demagneti-

0.5-

zation effect, the linear theory for the field-induced patterns
is expected to give reasonable results over a larger range than
the linear approximation of the Langevin function.

015 02 025 03 _ _ i
B, [tesla] B. Comparison with experimental data

FIG. 4. Dependence of the normalized stripe width/L in We have recgntly_shown that a Iln_ear. approach, which
striped structures on the external fiéld. The theoretical results of f[akes the nonuniformity of th_e magnetization in .the patterns
the linear and the nonlinear methods are compared to experimentd]t0 account, correctly describes the decrease in the pattern
data. The nonlinear curves are shown for four different particleSize at a high field. For the comparison between the nonlin-
sizes. Parametersy=1.6, M =4.46x10° Am~!, L=0.9 mm, ear results and the experimental data, we face a serious prob-
#=0.5, ando=0.0043 Nni*. The experimental points were ob- lem. Rosensweigt al.[3] do not give enough information to
tained from Ref[3]. The curve ford=6 nm deviates only at a high completely define the magnetization curve. They only men-
field from the linear one. tion the initial susceptibility of 1.6 and the saturation mag-

netization of 25860 Am'. Assuming the material of the
We will come back to this point, when we compare the non-particles is magnetite, a volume fraction can be computed
linear results with the experimental data. . from equation g=M¢/My=5.8%. Using the mean-field

Figure 4 shows the energetically favorable stripe width a%quation(11) with the given value ofy gives a particle di-

a function of the applie.d fieldHo. The dots in this figure ,meter of 12.3 nmThe Langevin expressiofi0) yields a
correspond to the experimental data taken from FBif.The larger value ofd=13.8 nm] Figure 4 shows that the results

comparison between the linear and the nonlinear curveg, - ined ford=12 nm markedly deviate from the experi-

leads to the following conclusions. First, the effect of the . X .
; . . .__“mental data points. We have investigated several reasons to
nonlinearity ofM (H) markedly depends on the particle size. o
explain this disagreement.

Thus, ford=6 nm we observe only small differences be- First ficle si £ 12 b ite | :
tween the linear and the nonlinear curve for the studied ' 'ov & Particle siz€ o nm seems o be qurte 1arge in
fields. With increasing particle size the deviation from theCOmParison with diameters typically published in the litera-

linear behavior increases. Second, the nonlinear curves satti®: Which vary between 6 and 10 rj82]. The choice of a
rate at high field, which can be observed in Fig. 4 br smaller particle diameter of about 6 nm markedly improves
=10 nm and 12 nm. This behavior is in contrast with thethe agreement with the experimental data. However, a diam-
linear case where saturation is not expected for the followingter of the order of 6 nm implies unreasonably large volume
reason. It has been shown elsewhere that a diminution of tHgactions of 50%. Another reason for the disagreement be-
pattern size always leads to a decrease of the demagneti&een the experiment and the nonlinear approach might be
tion field [4]. This change in the demagnetization field causeghe use of the Langevin theory. However, we found that the
a larger magnetization and a more negative energy accordingagnetization curve obtained from the mean-field expression
to Eq.(12), which explains the pattern formation. This works is very close to the Langevin functiqsee Fig. 2 Thus the
even at high field in the linear case. For the same reasons,use of the Langevin function cannot explain the deviations
saturation is expected for a nonlinear relation, siktean-  from the experiment. We have also examined the idea that
not be changed by a variation of the demagnetization field athe particles are not made of magnetite. A thorough study of
high field. Therefore, a further reduction of the pattern sizeEgs.(6), (7), and(11) shows that is completely defined by
does not lead to a more negative energy and the nonlinedine values ofMg and y. This means that we can use any
curves saturate. For smaller particle diameters, the saturatioralue of M4 without changing the magnetization curve cal-
limit is reached at higher field strengths and cannot thereforeulated from the Langevin equation. However, the dipolar
be observed in Fig. 4. coupling parameter increases witMy and the Langevin

The two conclusions drawn from Fig. 4 are also valid fortheory might not give reliable predictions for the magnetiza-
the magnetization curves calculated from the Langevin function in this case. Without further information on the magne-
tion (see Figs. 1 and)2 Obviously, the pattern sizes are tization curve of the ferrofluid we cannot reach a conclusion
markedly determined by the form & (H). In contrast, the as to the quality of the nonlinear approach. Nevertheless,
magnetization curves of the Langevin equation cannot diexperimental studies, which were recently carried out at our
rectly be used to predict the onset of the nonlinear behaviotaboratory[21], indicate that the nonlinear approach is able
Thus, ford=10 nm the nonlinear curve in Fig. 4 deviates to correctly predict pattern sizes at a high field. In particular,
from the linear one atl;=0.03 T. In Fig. 1, we observe the the existence of a high-field saturation is shown by these
transition to a nonlinear behavior at lower field strengths ofexperiments.
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1. : : B
* data s 5 ! ' — linear

-- non—linear

— linear regression: In(H,; ~) = 3.1 In(d) + const

O igs  <ise  isd - is2 g T P T
In(d / m) 0 0.02 0.04 0.06 0.08 0.1
BO [tesla]

FIG. 5. Logarithms of the magnetic field where the linear and
nonlinear curves deviate more than 10% as a function of the loga- FIG. 6. Dependence of the normalized cylinder radigd for
rithm of the particle diameter. The diameter varies between 6 anthexagonal structures on the external fielg. The theoretical re-
12 nm. The solid line shows a linear fit of the calculated points.sults of the linear and the nonlinear methods are compared. The
Parameters: see Fig. 4. particle diameter isd=10 nm. Parametersy=1.6, My=4.46

x10° Am~%, L=1 mm, ¢=0.5, ando=0.0043 N ?.
C. Limiting cases of the nonlinear theory

It is of interest to examine the asymptotic behavior of the'cleld is higher than for smal. Therefore, the. apphed field
nonlinear approach at low and high field. For low field must be Iarge_r to compensate the demagnetization effect and
strength, the results are those of the linear theory. Figure ip give a non_llnear behawor.. . .
shows that the field, at which nonlinear and linear results Ata h'g.h field, the magnetization of th? fefrOf'.“'d reaches
begin to deviate, strongly depends on the particle size. ifis saturation valués. Then, the magnetization is constant

order to study this dependence, we have deﬂﬂ#ﬁ’ as the during the pattern formation. In this case, it has been shown

field, at which the difference between the nonlinear and Iin-that the calculation of the magnetic energy can be greatly

ear values ofv; is 10%. Figure 5 is a In-In plot dfi}?” as a simplified[14,18.
function of the particle sizel. The parameters are the same No

2
as ir) Fig. 4.11(;E/1e solid line represents a Iinear fit of the dgta. szz M:’Mof dY1d21f dy,dz
Obviously,H;” decreases roughly as the inverse of the third i=1 a7
power ofd: H19%xd =3, This is explained by a development
of the Langevin function up to the second term [ ! — ! ] _ (21)
Y Vs—%)® V(s—8)*+L?
— 5
L(a)=3 = 257 0(a). 18 The sum is over al cylinders or stripes in the pattesn.
=(y;,z) denotes points at the top of the cylinder or stripe
Using Eq.(7) for a, we find for a deviation ok% from The new expression is derived from the interpretation of
linearity for the Langevin function: the magnetic potential as that arising from constant magnetic
3 charges along the top and the bottom surfaces of the mag-
Vo~ — a—och(HX%)z (19 netic domaingsee the discussion of method C in Ref8]).
45 nt o We have verified that the stripe widths obtained by the non-
linear approach actually tend to the results calculated from
Rearranging the terms we arrive at expression21) at a high field.
In X% 2 Ind3+2 In(HX{*) — HX{Pocd 3. (20)

D. Transition between hexagonal and labyrinthine patterns

Obviously, the beginning of nonlinear effects is deter- The transition between hexagonal and labyrinthine pat-
mined by the form of the magnetization curve. In the previ-terns was observed in several experimdbts7]. These in-
ous section, however, we have observed that the demagnetlicate that hexagonal structures predominate at s¢ndlhis
zation field modifies the onset of the nonlinear behavior. Thihas been explained by theoretical studik, 18,33. In con-
is evident, when the pattern size is studied at various volumé&ast, our linear theory does not account for the transition
fractions. Figure 6 is the plot of the cylinder radius for hex- between both structures experimentally observed by a varia-
agonal patterns ap=0.2 and¢=0.7. For the larger volume tion of the external field. Two different explanations for these
fraction, the nonlinear curve starts to deviate from the lineafield-induced transitions have been proposed in the literature.
one at much higher field strengtlisee arrows in Fig. 6  Hong et al. [34] gave experimental evidence that the transi-
This can be explained by the demagnetization effect. Fotion between hexagonal and labyrinthine patterns observed at
larger ¢, the cylinders are closer and the demagnetizatiorsmall ¢ is due to metastable structures. In contrast, Lacoste
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reformulation of the magnetic energy term provides accurate
and efficient calculations of the free energy. This enables the
study of ferrofluid patterns even at a high field.

The theoretical results are strongly determined by the

" |— linear
-- non-linear

= ] form of the magnetization curve. Thus, the field, at which a
;;~ nonlinear behavior begins, increases witti*14s the Lange-

o vin function. Moreover, a saturation is observed at a high
3'; 0 field which is typical for a nonlinear behavior. The theoreti-

cally predicted saturation regime has been confirmed by re-
cent experimentf21]. We have shown here that at saturation
a simplified formula of the magnetic energy can be used.

In spite of the predictive value of the magnetization curve,
it cannot be used to estimate the field where the nonlinear
curve separates from the linear one. This is due to the de-
magnetization field, which shifts the beginning of nonlinear-
ity to higher fields. Therefore, the linear theory of pattern
formation should be reliable over a larger field range than in
the case of the magnetization curve. For the transition be-
tween hexagonal and labyrinthine patterns, only small differ-
ences have been observed between the linear and nonlinear

-1

B, in tesla

FIG. 7. Normalized free energy differenceB, - F,)/F, as a
function of the field for three representative rati¢sof the mag-
netic to the total volume. The results for the nonlinear and the linea
approach are given. Parameteys:1.6, My=4.46<x10° Am™ 1, d
=10 nm,L=1 mm, ando=0.0043 Nm1,

and Lubensky11] explain the field-induced transitions using

approaches.

a model with a varying density of magnetic nanoparticles The comparison with experiments suffers from the lack of

within the ferrofluid. With respect to this discussion, it is of
some interest whether the nonlinearity of the magnetizatio

curve can lead to new transitions between hexagonal anél

labyrinthine patterns. In Fig. 7 the normalized energy differ-
ence F,—F;)/F, in % between the labyrinthine and hexago-
nal patterns is plotted. The positive values & F})/F,

for ¢<0.3 indicates the predominance of hexagonal pattern
at small volume fraction. For the particle diameter of 10 nm

reliable data on the magnetization curve of the experimen-
lly used ferrofluid. Our approach predicts an agreement
etween the nonlinear and linear theory only at unrealisti-
cally small particle diameters. Therefore, we do not under-
stand the success of the linear theory in reproducing the ex-
gerimental data for the time being. More experimental data
on ferrofluid patterns, in particular at high field strength,

used here, Fig. 1 shows that differences between the nonlifvould be of great value.
ear and linear results can be expected at fields larger than
0.05 T. The observed differences are small. In particular, no

transition is observed by a variation of the field using both
approaches. At a high field, the nonlinear theory reaches
constant differencel, —F,)/F, due to the saturation limit.

IV. CONCLUSIONS
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