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Nonlinear theory of pattern formation in ferrofluid films at high field strengths

J. Richardi* and M. P. Pileni†

Laboratoire des Mate´riaux Mésoscopiques et Nanome´triques, UMR CNRS 7070, Universite´ Pierre et Marie Curie (Paris VI),
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~Received 10 April 2003; published 26 January 2004!

When a magnetic field is applied to a thin layer of a suspension of magnetic nanoparticles~ferrofluid!, the
formation of labyrinthine and hexagonal patterns is observed. We introduce a theory to describe ferrofluid
patterns at high field, where a nonlinear relationship between field and magnetization is expected. The com-
putational difficulties due to the use of a nonlinear magnetization curve are solved by a reformulation of the
magnetic energy equation. The evolution of the pattern size at intermediate and very high fields can be
understood by an analysis of limiting cases of the magnetization curve. In particular, at a very high field the
pattern size reaches a constant saturation value which has been recently confirmed by experiments. The field
for the onset of a nonlinear behavior is shifted to higher field strength due to a demagnetization effect. This can
partially explain the ability of linear approaches to reproduce experimental data even at a high field. Finally, the
impact of the nonlinearity of the magnetization curve on the transition between hexagonal and labyrinthine
patterns is discussed.

DOI: 10.1103/PhysRevE.69.016304 PACS number~s!: 47.54.1r, 47.65.1a, 77.84.Nh
no
-
m
o
in

at
c
in
lls
p
b

y

ne
ld
o

co
in

-
dl

og
n
ru
al
s
u

ions

for-
and
-
e-

hts

ods

re-
e

ths
ved
he-

pat-
ries
tive
s in

by
res

s of
en-
eral
tai-

si-
ex-
we
eir
ar

etic
e 1://

.

I. INTRODUCTION

Ferrofluids are colloidal suspensions of magnetic na
particles in a liquid solvent@1#. These magnetic liquids ex
hibit a large number of extraordinary properties. A pheno
enon which has received considerable attention, b
experimentally and theoretically, is the so-called labyrinth
instability @2,3#. A ferrofluid is confined with an immiscible
nonmagnetic liquid between two closely spaced glass pl
~Hele-Shaw cell!. The application of a uniform magneti
field at right angles to the glass plates induces a labyrinth
pattern of several millimeters: the convoluted black wa
made of the ferrofluid are separated by paths of the trans
ent nonmagnetic liquid. This magnificent instability was o
served for the first time in the late 1970s@2#. The initial
theoretical studies focused on the conditions necessar
establish the labyrinthine patterns@2#. In 1983, Rosensweig
et al. @3# proposed a theory to calculate the labyrinthi
stripe width as a function of the cell height and the fie
strength. Their theoretical results were apparently in go
agreement with the experimental data@3,4#. In the following
years, experimental studies showed that, under certain
ditions, hexagonal arrays of ferrofluid columns appear
stead of labyrinthine patterns@5,6#. Due to the use of de
mixed ferrofluids, the size of the patterns were marke
reduced to several micrometers@5,7#. Structures similar to
those in ferrofluids were also observed in magnetorheol
cal suspensions@8,9#. The dynamics of the pattern formatio
and the transition between hexagonal and labyrinthine st
tures were studied, both theoretically and experiment
@6,7,10–16#. The occurrence of similar patterns in other sy
tems, such as Langmuir monolayers and type I supercond
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ors, has been the subject of several theoretical investigat
@17#.

The theoretical approaches are usually based upon the
mulation of the free energy as a sum of magnetostatic
interfacial parts@1–3#. Recent theoretical studies also in
clude an entropy term, which might prove important in d
termining the size of patterns for micron-sized cell heig
@10,11#. Approximations@2,3# were proposed to simplify the
computation of the magnetic energy. Although these meth
are widely used nowadays@6,10,12–16# the effects of the
approximations upon the calculated results were only
cently studied@18,19#. We have shown that, in particular, th
approximation introduced by Rosensweiget al. @3# leads to
markedly overestimated stripe widths at high field streng
@4#. The good agreement with experimental data obser
before was due only to errors in the computation of the t
oretical values which were corrected in Ref.@4#. Moreover,
the method proposed by Rosensweiget al. @3# predicts field-
induced transitions between hexagonal and labyrinthine
terns which are not confirmed using more accurate theo
@18#. Therefore, we have recently developed an alterna
approximate scheme that is very efficient and gives value
good agreement with the accurate results@19#.

Our interest in these kinds of theories was motivated
the discovery of labyrinthine and hexagonal mesostructu
of magnetic cobalt nanocrystals in our laboratory@20,21#.
They have been obtained by the evaporation of solution
cobalt nanocrystals while applying a magnetic field perp
dicular to the substrate. These artificial structures of sev
hundreds of nanometers can be manipulated to achieve
lored materials for applications and for exploration of phy
cal phenomena. Our aim is to develop a theory, which
plains the formation of these mesostructures. Moreover,
want to find the parameters which control their size and th
morphology. One major obstacle to this theory is the line
relationship between the magnetization and the magn
field usually assumed in published approaches. Figur
shows the magnetization curveM (H) of a deposition of co-
©2004 The American Physical Society04-1
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balt nanocrystals. The field strengths used to produce
mesostructures of these nanocrystals range between 0.3
0.8 T ~marked by an arrow!. At these field strengths, th
relationship betweenM and H is completely nonlinear. The
aim of this paper is to develop a theory that takes the n
linear behavior ofM (H) into account. Such a theory is o
more general interest. Thus, the good agreement betw
theory and experiment observed in our recent paper@18#
leads to the question: Why does alinear approach give reli-
able predictions, even at a high field, for the experime
carried out by Rosensweiget al.? Indeed, the magnetizatio
curve of a typical ferrofluid shown in Fig. 1 indicates th
some of those experiments in Hele-Shaw cells are carried
under nonlinear conditions.

How must the linear approach described in Ref.@18# be
modified to take the nonlinear behavior ofM (H) into ac-
count? The morphology and size of the patterns are usu
calculated by a minimization of the free energy. For a giv
structure~described in Sec. II A! the total energy is obtaine
by the following procedure in the linear case.

~1! From a given magnetization, the demagnetization fi
in the pattern is computed~see Sec. II C!.

~2! The magnetization is calculated self-consistently fro
the demagnetization field using a linear relationship.

~3! The magnetization is used to evaluate the magn
energy. Here, an equation is used, which is only valid in
linear case.

~4! The total free energy is calculated from the magne
surface and entropic terms.

In the nonlinear case, the nonlinear relationships have to
used in steps~2! and ~3! as explained in Secs. II D and II E
respectively. This leads to some difficulties in step~3! ~com-
putation of the magnetic energy!. In Sec. II E, we show how
these problems can be solved. In Sec. III, the nonlin
theory is applied to calculate pattern size as a function of

FIG. 1. Magnetization curves. Solid line: experimental curve
a deposition of cobalt nanoparticles@21#; dashed line: Langevin
function of a ferrofluid~magnetite particles with a diameter of 1
nm, initial magnetic susceptibility of 1.6!; dotted line: linear ap-
proximation of this Langevin function. The arrows indicate t
range of fields used for the experiments by Rosensweiget al. @3#
~Hele-Shaw cell! and by Germainet al. @21# ~deposition of Co
nanocrystals!.
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field strengths. The nonlinear results are compared with
linear values and experimental data. Then, the theore
results obtained by the nonlinear approach are discussed
respect to two limits. First, at low field strengths, the diffe
ences between the linear and nonlinear curves can be
scribed by truncated expansions. Second, we can derive
plifying relationships at high field strengths, where t
magnetization reaches a constant value. Finally, the tra
tion between hexagonal and striped patterns is investiga
In particular, we are interested in the question, whether
nonlinear theory leads to new transitions with respect to
linear theory. All calculations were carried out using t
homemade FORTRAN packageHEXALAB @22#.

II. THEORY

A. Description of the magnetic patterns

Following previous studies@3,10,18,19#, the labyrinth is
described as a repeating pattern of infinitely long para
stripes, while the hexagonal structure is idealized as a h
agonal array of cylinders. The symmetries of these structu
allow a marked reduction of the computing time. Therefo
very accurate estimates of the free energy can be calcula
Theoretical studies of realistic labyrinthine patterns ha
shown that the idealized description of the structures u
here can give reasonable estimates of the pattern size@16#.

The ratio of the ferrofluid to the total volume is denote
by f. For a givenf, the geometry of the striped patterns
defined by the cell heightL and by the stripe widthwf . The
hexagonal structure is described byf, L andr 0, which is the
radius of the cylinders. The global frame is chosen in suc
way that itsx axis is along the direction of the applied field

B. Free energy of ferrofluid patterns

In accordance with Refs.@3,10,18,19#, values ofr 0 or wf
are obtained by a minimization of the free energy per surf
area f 5F/s. The free energy consists of a surface and
magnetic term:

F5Fs1Fm . ~1!

Since we limit our study to pattern heights greater tha
mm, the entropy is neglected@18#. The surface energy is
characterized by the interfacial tensions between the two
immiscible liquids. In agreement with experimental stud
@23#, we assume thats does not depend on the field strengt
The surface energies per surface area for the hexagona
striped patterns were derived elsewhere@see Eqs.~15! and
~16! in Ref. @18##.

The general equation for the magnetic energy is given

Fm5E
V
E

0

B

H8~r !•dB8~r !dr2
m0

2 E
V
H0

2dr . ~2!

The magnetic induction is calculated from

B~r !5m0„H~r !1M ~r !…, ~3!

f

4-2
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NONLINEAR THEORY OF PATTERN FORMATION IN . . . PHYSICAL REVIEW E69, 016304 ~2004!
whereM ~r ! is the magnetization in the cylinders or stripe
The magnetization in the pattern is a function of the m

netic field

M ~r !5 f „H~r !…. ~4!

H~r ! is the total field which is the sum of the strength
the applied fieldH0 and of the negative demagnetizatio
field Hd(r ):

H~r !5H01Hd~r !. ~5!

C. Calculation of the demagnetization field

The demagnetization field is caused by the magnetiza
within the ferrofluid, which is calculated here from a nonli
ear relation. The calculation ofHd from a given magnetiza
tion does not change in comparison with the linear case.
explained elsewhere@18,19#. In particular, the correct treat
ment of the long-range dipolar interaction is derived in R
@18#. The volume-averaged magnetization is used during
evaluation ofHd . This allows us to simplify the numerica
calculations and, thus, to largely reduce the computing t
@19#. We have recently shown that in the linear case t
approximation does not significantly change the calcula
pattern sizes and energies@19#. We also verified that in the
nonlinear case the use of an averaged magnetization doe
affect the theoretical results.

D. Nonlinear magnetization curves

In contrast to previous approaches, we do not restrict o
selves to a linear relationship betweenM andH.

The magnetization curvef (H) can be measured by ex
periments, such as those using the superconducting qua
interference device~SQUID!. In this paper, it is approxi-
mated by a Langevin function, which is introduced in t
following.

For ferrofluids with weak dipolar coupling, the magne
interactions between the nanoparticles can be neglecte
this case, the Langevin theory gives reasonable estimate
the magnetization as a nonlinear function of the total m
netic field:

ML~H !

wMd
5L~a!5cotha2

1

a
, ~6!

a5
p

6

m0Mdd3

kBT
H. ~7!

We assume a monodisperse suspension of nanopar
with a magnetic diameterd. Md is the saturation moment o
the bulk.w is the volume fraction of the magnetic particle
Note the difference betweenw and the ratio of the ferrofluid
to the total volume in the pattern denoted byf. w can be
calculated from the saturation moment of the ferrofluidMs
using w5Ms /Md . The temperatureT is fixed at 300 K in
the following.

We will use the Langevin model to study the influence
a nonlinear magnetization on the ferrofluid patterns. The
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fore, we are now demonstrating that the use of a Lange
function is justified for the systems studied in the paper.
evaluate the effect of the approximations made in this mo
we compare the magnetization curves of the Langevin
more accurate approaches. Several models have been de
to take the magnetic interparticular interactions into acco
@24–26#. For example, in the higher-order, modified, mea
field model @26#, the field H in Eq. ~7! is replaced by an
effective field given by

He5H1
ML~H !

3
1

1

144
ML~H !

dML~H !

dH
. ~8!

The range of validity of this theory is determined by th
dipolar coupling parameter:

l5
m2

4pm0kBTd3
, ~9!

where the dipole moment of the magnetic particles is cal
lated fromm5m0Mdd3p/6. A very recent simulation study
has shown that the modified mean-field model gives relia
predictions for the dipolar coupling parameterl,3 @27#.
Here, we restrict our study to values ofl smaller than 2.5
which corresponds to a particle size of about 12 nm. Figur
compares the magnetization curves obtained by the Lang
theory and the more accurate mean-field model. The in
susceptibilityx defined by the relationshipM5xH is fixed
at 1.6. Two values of the volume fractionw are used~6% and
21%! @27#. This covers the typical concentration range whi
is obtainable in real ferrofluids. The deviations between
two theories are less than 3%. This precision is suffici
for this study. Moreover, the Langevin function allows th
use of analytical expressions to describe the evolution of
magnetization at intermediate field strength. This is used
Sec. III C.

For small field strengths~a!1!, we reach a linear rela
tionship betweenM and H characterized by the magnet
susceptibility. In the case of the Langevin theory the susc
tibility is given by

FIG. 2. Magnetization curves of a ferrofluid~magnetite particles
with volume fractions of 6% and 21%, initial magnetic susceptib
ity of 1.6!. Solid and dashed-dotted lines: Langevin functio
dashed and dotted lines: modified mean-field model.
4-3
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J. RICHARDI AND M. P. PILENI PHYSICAL REVIEW E69, 016304 ~2004!
xL5
p

18
w

m0Md
2d3

kBT
. ~10!

More accurate expressions were derived using the m
spherical approximation~MSA! @28#, the Born-Mayer expan-
sion method@29#, and the statistical model based on the p
correlation function@30#. Taking xL as a parameter, all th
above approaches lead to the same higher-order expre
for the initial susceptibility@30#:

x5xL~11xL/31xL
2/144!. ~11!

This equation corresponds to the weak field limit of t
mean-field model@Eq. ~8!#. Experimental measurements@30#
and simulation studies@27# have shown that this equatio
gives reliable results forl,3. In Sec. III A, Eqs.~10! and
~11! will be employed to calculate the variation of the vo
ume fractionw of the magnetic fluid as a function of th
particle size for givenx andMd .

E. Calculation of the magnetic energy in the nonlinear case

In the case of a linear relationship betweenM andH Eq.
~2! simplifies to give

Fm52
m0

2 E
Vm

M ~r !•H0dr , ~12!

where Vm is the volume occupied by the magnetic liqui
There are two major differences between the general Eq~2!
for Fm and its linear counterpart.

~i! Equation~2! implies an additional integration overB.
~ii ! The integrals of the general expression are over

total volumeV, while in the linear equation they are on
over the volumeVm of the magnetic matter.

These two differences markedly complicate the calcu
tion in the nonlinear case. In the following section, we w
show how they can be overcome.

For a nonlinear relationshipM5 f (H), Eq. ~2! cannot be
simplified as in the linear case. In particular, the integrat
over B cannot be avoided. Thus, to obtain the magnetic
ergy for a given applied fieldH0, the magnetization and th
demagnetization field at all intermediate field strengths
tween 0 T andH0 must be computed. In contrast in the line
case, the magnetization needs only to be evaluated a
field H0. Tests have shown that we can use quite a la
integration stepDB,0.005 T, without affecting the numeri
cal precision of the results. In addition, the evolution of p
terns is usually studied over a complete range of fi
strengths starting from 0 T. Therefore, the integration oveB
does not markedly reduce the efficiency of our approach

The second difficulty arising from the use of Eq.~2! is
due to the integration over the total volume. In the followin
we will show that Eq.~2! can be rewritten in a form tha
contains only integrals over the magnetic volume as in
linear case. The first integral in Eq.~2! can be divided into
two integrals, that over the volume of the magnetic fluidVm
and that of the nonmagnetic liquidVnm :
01630
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where we use thatB5m0H in Vnm . After carrying through
the integration overH, we can rewriteE2 as

E25
m0

2 E
V
H2dr2

m0

2 E
Vm

H2dr . ~14!

The integral overVnm in Eq. ~13! is replaced by the dif-
ference of those over the total volumeV andVm . In order to
further simplifyE2, we use a relationship derived in Rosen
weig’s textbook~@1#, pp. 96–98!:

E
V

1

2
~B•H2m0H0

2!dr52
m0

2 E
Vm

M•H0dr . ~15!

This relationship also holds in the nonlinear case, beca
for its derivation the assumption of a linear relationship b
tweenM andH is not used. EmployingB5m0(H1M ), Eq.
~15! can be rearranged to give

m0

2 E
V
H2dr52

m0

2 E
V
M•Hdr

1
m0

2 E
V
H0

2dr2
m0

2 E
Vm

M•H0dr . ~16!

The first integral on the right side can be restricted toVm ,
since M50 outside the magnetic liquid. Combining Eq
~13!, ~14! and ~16!, we finally arrive at

Fm5E
Vm

E
0

B

H8•dB8dr2
m0

2 E
Vm

M•Hdr

2
m0

2 E
Vm

M•H0dr2
m0

2 E
Vm

H2dr . ~17!

The new form ofFm is very useful in computation since
contains only integrals overVm . This largely reduces the
size of the spatial grid used for the numerical integration.
the case of the hexagonal pattern, another fact makes
~17! very useful for the numerical calculations which is e
plained as follows. Let us study the evolution of the dema
netization field in the hexagonal pattern. The demagnet
tion field is used to calculate the total field, which appears
the equation of the magnetic energy. The demagnetiza
field is self-consistently computed by an integration over
magnetization as discussed in Sec. II C. The magnetizatio
calculated from a Langevin function introduced in Sec. II
We use the same parameters for the Langevin function a
the whole paper. The demagnetization field is plotted a
4-4
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NONLINEAR THEORY OF PATTERN FORMATION IN . . . PHYSICAL REVIEW E69, 016304 ~2004!
function of the distance from the center of a cylinder in F
3. The sketch in the same figure shows the tops of th
cylinders of the hexagonal pattern. Due to the translatio
symmetry of the idealized structure, the integrals over
total volume in Eq.~2! can be restricted to the hexago
around one cylinder. In Fig. 3, we plot only the evolution
the demagnetization field within the hexagon.b denotes the
radial angle of the cylindrical frame with its origin at th
center of a cylinder. Due to the rotational symmetry of t
hexagonal pattern, the calculations can be restricted to
interval of 30° presented by the two lines within the hexag
of Fig. 3.b50° denotes the direction of the smallest sepa
tion from the next cylinder, whileb530° corresponds to the
midway between two neighboring dots. The number
anglesb necessary for an accurate computation of the in
grals in Eqs.~2! and~17! depends on the variation ofHd with
b. Figure 3 shows that outside the cylinder the demagnet
tion fields for the different values ofb deviate. Therefore, in
the case of Eq.~2! where we integrate over the total volum
many anglesb have to be used. In contrast, the variation
Hd with b is small within the limits of the cylinder. For Eq
~17!, where the integration is restricted to the inside of t
cylinder, we can therefore reduce the number of anglesb.
We want to emphasize that the use of Eq.~17! instead of the
general expression does not only lead to an enormous ga
computing time. In addition, only the reformulated equati
allowed an accurate computation of the magnetic energ
Indeed, we never did succeed in the calculation of num
cally stable values ofFm from Eq.~2! for hexagonal patterns
even when very large numbers ofb values were used. Hence
the use of Eq.~17! instead of the original expression mak
possible an accurate and efficient calculation of the magn
term.

There are several other approximation schemes prop
in the literature to calculate the magnetic energy in the lin
case. We have recently shown that the approximation o
average magnetization for the demagnetization field u
here gives the best results in comparison with accurate
ues@18#. Therefore, we will restrict our study to this approx

FIG. 3. Demagnetization field as a function of the distance fr
the cylinder center for three values ofb. Parameters:B0

50.002 T,x51.6,f50.5, r 050.5 mm,L51 mm, andx50. The
sketch presents a cylinder and two of its neighbors. The hexa
indicates the average space around the central cylinder used to
out the integration.
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mation. It is nevertheless interesting to note that an alter
tive approach introduced by Cebers and recently used in
@31# can be easily extended to the nonlinear case. This
proach assumes a constant magnetization during the pa
formation. It has been demonstrated that this approach
be derived as an approximation of the method using an
erage magnetization. Nevertheless, the pattern size obta
by the constant approach is in good agreement with accu
results in the linear case. The constant magnetization co
be calculated from a nonlinear magnetization curve, such
in Eq. ~6!, and, thus, this approach could be also applied
the nonlinear case. We expect that this method gives pat
size in good agreement with the approach used here, sin
can be shown that the results are close at low and high fi
Actually, at low field, we will find the good agreement fo
the linear case discussed above. At high field saturation,
will show in Sec. III C that the equations of magnetic ener
for both approaches become the same.

III. RESULTS

A. The influence of the nonlinear magnetization curve
on the pattern size

To compare the pattern sizes predicted by a linear an
nonlinear approach, the magnetization curve is represe
by the Langevin function in Eq.~6!. The comparison in Fig.
2 has shown that the Langevin theory gives reliable pred
tions under the conditions studied here. Since the magn
particles in many ferrofluids consist of magnetite, the dom
magnetization of this material is used in the following (Md
54.463105 A m21). The initial magnetic susceptibility
measured by Rosensweiget al. @3# for the ferrofluid em-
ployed in their experiment, is 1.6. The interfacial tension,
volume fraction, and the cell height correspond to the exp
mental conditions published in the same Ref.@3# ~s
50.0043 N m21, f50.5, L50.9 mm). The particle diam-
eter d in normal ferrofluids is about 10 nm@32#. The
magnetization curve calculated from the Langevin funct
for this particle diameter is shown in Fig. 1. To study t
influence of the particle size, four different diametersd rang-
ing from 6 nm to 12 nm are used. FromMd , x and d, the
magnetic volume fractionw within the ferrofluid can be cal-
culated either by Eq.~10! or by the more accurate mean-fie
equation~11!. The results ofw for the four particle sizes
studied here are shown in Table I. While particle siz
around 10 nm yield reasonable values ofw, the volume frac-
tion of 50.5% obtained ford56 nm is unrealistically large.

TABLE I. Values of the volume fraction of magnetic particlesw
in the ferrofluid calculated from Eqs.~10! and ~11! for different
particle sizes.x51.6; Md54.463105 A m21.

d (nm) w, Langevin w, mean-field

6 69.0% 50.5%
8 29.5% 21.2%
10 15.1% 10.8%
12 8.7% 6.2%

on
rry
4-5
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We will come back to this point, when we compare the no
linear results with the experimental data.

Figure 4 shows the energetically favorable stripe width
a function of the applied fieldH0. The dots in this figure
correspond to the experimental data taken from Ref.@3#. The
comparison between the linear and the nonlinear cur
leads to the following conclusions. First, the effect of t
nonlinearity ofM (H) markedly depends on the particle siz
Thus, for d56 nm we observe only small differences b
tween the linear and the nonlinear curve for the stud
fields. With increasing particle size the deviation from t
linear behavior increases. Second, the nonlinear curves
rate at high field, which can be observed in Fig. 4 ford
510 nm and 12 nm. This behavior is in contrast with t
linear case where saturation is not expected for the follow
reason. It has been shown elsewhere that a diminution o
pattern size always leads to a decrease of the demagne
tion field @4#. This change in the demagnetization field cau
a larger magnetization and a more negative energy accor
to Eq.~12!, which explains the pattern formation. This wor
even at high field in the linear case. For the same reason
saturation is expected for a nonlinear relation, sinceM can-
not be changed by a variation of the demagnetization fiel
high field. Therefore, a further reduction of the pattern s
does not lead to a more negative energy and the nonli
curves saturate. For smaller particle diameters, the satura
limit is reached at higher field strengths and cannot there
be observed in Fig. 4.

The two conclusions drawn from Fig. 4 are also valid f
the magnetization curves calculated from the Langevin fu
tion ~see Figs. 1 and 2!. Obviously, the pattern sizes ar
markedly determined by the form ofM (H). In contrast, the
magnetization curves of the Langevin equation cannot
rectly be used to predict the onset of the nonlinear behav
Thus, for d510 nm the nonlinear curve in Fig. 4 deviate
from the linear one atH050.03 T. In Fig. 1, we observe th
transition to a nonlinear behavior at lower field strengths

FIG. 4. Dependence of the normalized stripe widthwf /L in
striped structures on the external fieldH0. The theoretical results o
the linear and the nonlinear methods are compared to experim
data. The nonlinear curves are shown for four different part
sizes. Parameters:x51.6, Md54.463105 A m21, L50.9 mm,
f50.5, ands50.0043 N m21. The experimental points were ob
tained from Ref.@3#. The curve ford56 nm deviates only at a high
field from the linear one.
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about 0.015 T. This can be explained as follows. The fer
fluid forming the pattern is subjected to a field which
reduced from the applied field strength due to the demag
tization field. Since the magnetization in the pattern depe
on the total field, the applied field in Fig. 4 must be high
than that in Fig. 1 to compensate the demagnetization fi
and to induce a nonlinear behavior. Due to this demagn
zation effect, the linear theory for the field-induced patte
is expected to give reasonable results over a larger range
the linear approximation of the Langevin function.

B. Comparison with experimental data

We have recently shown that a linear approach, wh
takes the nonuniformity of the magnetization in the patte
into account, correctly describes the decrease in the pa
size at a high field. For the comparison between the non
ear results and the experimental data, we face a serious p
lem. Rosensweiget al. @3# do not give enough information to
completely define the magnetization curve. They only m
tion the initial susceptibility of 1.6 and the saturation ma
netization of 25860 A m21. Assuming the material of the
particles is magnetite, a volume fraction can be compu
from equation w5Ms /Md55.8%. Using the mean-field
equation~11! with the given value ofx gives a particle di-
ameter of 12.3 nm.@The Langevin expression~10! yields a
larger value ofd513.8 nm.# Figure 4 shows that the result
obtained ford512 nm markedly deviate from the exper
mental data points. We have investigated several reason
explain this disagreement.

First, a particle size of 12 nm seems to be quite large
comparison with diameters typically published in the liter
ture, which vary between 6 and 10 nm@32#. The choice of a
smaller particle diameter of about 6 nm markedly improv
the agreement with the experimental data. However, a di
eter of the order of 6 nm implies unreasonably large volu
fractions of 50%. Another reason for the disagreement
tween the experiment and the nonlinear approach migh
the use of the Langevin theory. However, we found that
magnetization curve obtained from the mean-field express
is very close to the Langevin function~see Fig. 2!. Thus the
use of the Langevin function cannot explain the deviatio
from the experiment. We have also examined the idea
the particles are not made of magnetite. A thorough study
Eqs.~6!, ~7!, and~11! shows thata is completely defined by
the values ofMs and x. This means that we can use an
value of Md without changing the magnetization curve ca
culated from the Langevin equation. However, the dipo
coupling parameter increases withMd and the Langevin
theory might not give reliable predictions for the magnetiz
tion in this case. Without further information on the magn
tization curve of the ferrofluid we cannot reach a conclus
as to the quality of the nonlinear approach. Neverthele
experimental studies, which were recently carried out at
laboratory@21#, indicate that the nonlinear approach is ab
to correctly predict pattern sizes at a high field. In particul
the existence of a high-field saturation is shown by th
experiments.
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NONLINEAR THEORY OF PATTERN FORMATION IN . . . PHYSICAL REVIEW E69, 016304 ~2004!
C. Limiting cases of the nonlinear theory

It is of interest to examine the asymptotic behavior of t
nonlinear approach at low and high field. For low fie
strength, the results are those of the linear theory. Figu
shows that the field, at which nonlinear and linear resu
begin to deviate, strongly depends on the particle size
order to study this dependence, we have definedHnl

10% as the
field, at which the difference between the nonlinear and
ear values ofwf is 10%. Figure 5 is a ln-ln plot ofHnl

10% as a
function of the particle sized. The parameters are the sam
as in Fig. 4. The solid line represents a linear fit of the da
Obviously,Hnl

10% decreases roughly as the inverse of the th
power ofd: Hnl

10%}d23. This is explained by a developmen
of the Langevin function up to the second term

L~a!5
a

3
2

a3

45
1O~a5!. ~18!

Using Eq.~7! for a, we find for a deviation ofx% from
linearity for the Langevin function:

x%'2
a3

45
}d6~Hnl

x%!2. ~19!

Rearranging the terms we arrive at

ln x%}2 lnd312 ln~Hnl
x%!→Hnl

x%}d23. ~20!

Obviously, the beginning of nonlinear effects is det
mined by the form of the magnetization curve. In the pre
ous section, however, we have observed that the demag
zation field modifies the onset of the nonlinear behavior. T
is evident, when the pattern size is studied at various volu
fractions. Figure 6 is the plot of the cylinder radius for he
agonal patterns atf50.2 andf50.7. For the larger volume
fraction, the nonlinear curve starts to deviate from the lin
one at much higher field strengths~see arrows in Fig. 6!.
This can be explained by the demagnetization effect.
larger f, the cylinders are closer and the demagnetizat

FIG. 5. Logarithms of the magnetic field where the linear a
nonlinear curves deviate more than 10% as a function of the lo
rithm of the particle diameter. The diameter varies between 6
12 nm. The solid line shows a linear fit of the calculated poin
Parameters: see Fig. 4.
01630
4
s
In

-

.
d

-
-
ti-

is
e

-

r

r
n

field is higher than for smallf. Therefore, the applied field
must be larger to compensate the demagnetization effect
to give a nonlinear behavior.

At a high field, the magnetization of the ferrofluid reach
its saturation valueMs . Then, the magnetization is consta
during the pattern formation. In this case, it has been sho
that the calculation of the magnetic energy can be gre
simplified @14,18#.

Fm5(
i 51

N0 Ms
2m0

4p E dy1dz1E dyidzi

3H 1

A~s12si !
2

2
1

A~s12si !
21L2J . ~21!

The sum is over all cylinders or stripes in the pattern.si
5(yi ,zi) denotes points at the top of the cylinder or stripei.

The new expression is derived from the interpretation
the magnetic potential as that arising from constant magn
charges along the top and the bottom surfaces of the m
netic domains~see the discussion of method C in Ref.@18#!.
We have verified that the stripe widths obtained by the n
linear approach actually tend to the results calculated fr
expression~21! at a high field.

D. Transition between hexagonal and labyrinthine patterns

The transition between hexagonal and labyrinthine p
terns was observed in several experiments@5–7#. These in-
dicate that hexagonal structures predominate at smallf. This
has been explained by theoretical studies@11,18,33#. In con-
trast, our linear theory does not account for the transit
between both structures experimentally observed by a va
tion of the external field. Two different explanations for the
field-induced transitions have been proposed in the literat
Hong et al. @34# gave experimental evidence that the tran
tion between hexagonal and labyrinthine patterns observe
small f is due to metastable structures. In contrast, Laco

a-
d
.

FIG. 6. Dependence of the normalized cylinder radiusr 0 /L for
hexagonal structures on the external fieldH0. The theoretical re-
sults of the linear and the nonlinear methods are compared.
particle diameter isd510 nm. Parameters:x51.6, Md54.46
3105 A m21, L51 mm, f50.5, ands50.0043 N m21.
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J. RICHARDI AND M. P. PILENI PHYSICAL REVIEW E69, 016304 ~2004!
and Lubensky@11# explain the field-induced transitions usin
a model with a varying density of magnetic nanopartic
within the ferrofluid. With respect to this discussion, it is
some interest whether the nonlinearity of the magnetiza
curve can lead to new transitions between hexagonal
labyrinthine patterns. In Fig. 7 the normalized energy diff
ence (Fl2Fh)/Fl in % between the labyrinthine and hexag
nal patterns is plotted. The positive values of (Fl2Fh)/Fl
for f,0.3 indicates the predominance of hexagonal patte
at small volume fraction. For the particle diameter of 10 n
used here, Fig. 1 shows that differences between the no
ear and linear results can be expected at fields larger
0.05 T. The observed differences are small. In particular,
transition is observed by a variation of the field using bo
approaches. At a high field, the nonlinear theory reache
constant difference (Fl2Fh)/Fl due to the saturation limit.

IV. CONCLUSIONS

We have developed a theory for the prediction of patte
in ferrofluid films using nonlinear magnetization curves.

FIG. 7. Normalized free energy differences (Fl2Fh)/Fl as a
function of the field for three representative ratiosf of the mag-
netic to the total volume. The results for the nonlinear and the lin
approach are given. Parameters:x51.6, Md54.463105 A m21, d
510 nm, L51 mm, ands50.0043 N m21.
gn
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reformulation of the magnetic energy term provides accur
and efficient calculations of the free energy. This enables
study of ferrofluid patterns even at a high field.

The theoretical results are strongly determined by
form of the magnetization curve. Thus, the field, at which
nonlinear behavior begins, increases with 1/d3 as the Lange-
vin function. Moreover, a saturation is observed at a h
field which is typical for a nonlinear behavior. The theore
cally predicted saturation regime has been confirmed by
cent experiments@21#. We have shown here that at saturati
a simplified formula of the magnetic energy can be used

In spite of the predictive value of the magnetization curv
it cannot be used to estimate the field where the nonlin
curve separates from the linear one. This is due to the
magnetization field, which shifts the beginning of nonline
ity to higher fields. Therefore, the linear theory of patte
formation should be reliable over a larger field range than
the case of the magnetization curve. For the transition
tween hexagonal and labyrinthine patterns, only small diff
ences have been observed between the linear and nonl
approaches.

The comparison with experiments suffers from the lack
reliable data on the magnetization curve of the experim
tally used ferrofluid. Our approach predicts an agreem
between the nonlinear and linear theory only at unreali
cally small particle diameters. Therefore, we do not und
stand the success of the linear theory in reproducing the
perimental data for the time being. More experimental d
on ferrofluid patterns, in particular at high field streng
would be of great value.
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